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- X-ray crystallography v
- Electron microscopy v
- Fluorescence v
- Magnetic resonance v

« Computer simulation, NMR, mass spec, cross-
linking, ...

4. Strategies in structural determination of membrane
proteins



1. Why studying membrane proteins?

Encoded by some 20-30% genes in typical genome.

Major components of the mosaic lipid bilayers in
cellular membranes

Mediate cell-to-cell communication and signaling
events.

Disruptions or mutations in humans have been
implicated in diseases, such as cardiovascular and
metabolic diseases, cancer, rare genetic diseases, ...
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Half drug targets are membrane proteins.

Target proteins (TP) TP + experimental targets Target proteins (1996-2006) Disease-related proteins

[[] Membrane
[[] Cytoplasm
[ ] Exterior
Organelles
[] Nucleus

[ "] Unknown

(Yildirim et al, Nat Biotech, 2007)



Available atomic/near-atomic models of
membrane proteins (2021-9-29)

PDB Statistics: Overall Growth of Released Structures Per Year
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Available atomic/near-atomic models of
membrane proteins (2021-9-29)
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2. Challenges in membrane protein
structural biology

e Naturally occurred proteins exist in low abundance, with
only a few exceptions (e.g., bacteriorhodopsin or
aquaporin), and form complexes.

e FE. coliis often not suitable for producing recombinant
membrane proteins of eukaryotic origins.

e No so-called standard protocol of protein extraction,
largely due to the complexity of protein-lipid interaction.

e Protocols of purification, crystallization, and in vitro
reconstitution remain empirical for individual cases.



Choosing the appropriate expression hosts for
recombinant proteins
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(Zorman et al, Curr Opin Struct Biol, 2015)



Things to consider for membrane protein
extraction and purification

e Cell disruption

e Solubilization agent
- Detergents
« Polymers

e Protein engineering

e Column chromatography

In vitro reconstitution



Membrane proteins are present in an anisotropic
and hydrophobic environment

Lipid-anchor _
protein <

Peripheral

......

i.  Must remove the protein from lipid-rich
mm}:‘ﬁad membrane to separate it from other

head group membrane proteins.

Phospholipid
bilayer . . )
T ii. Must be able to stabilize them as single

fatty acyl “particles” in an aqueous environment.
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(https://www.creative-proteomics.com/services/membrane-proteomics.htm)



Solubilization of membrane proteins using detergents:

Critical Micellar Concentration (CMC)
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3.4. The critical micellar concentration. As detergent (or sur-
factant) is added to an aqueous solvent, the concentration of
lMore detergent dissolved monomers increases until the critical micellar concen-
tration (CMC) is reached. At that concentration, micelles form.
Further addition of detergent increases the concentration of
micelles without appreciably affecting the concentration of

Mixed micelles:
é? Detergent-protein monomers. Redrawn with permission from Helenius, A., and K.
+ complexes and Simons, Biochim Biophys Acta. 1975, 415:38.
detergent-lipid
complexes

(Mary Luckey, Membrane Structural Biology, 2008)
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3. Ways to study membrane protein structures

e X-ray crystallography v/
e Electron microscopy v
e Fluorescence v

e Magnetic resonance v

e Computer simulation, NMR, mass spec, cross-linking, ...



Membrane protein crystallography

Coarse vapor diffusion

Transfer purified proteins to a microcentrifuge tube

Mix proteins with desired chemicals, other proteins,
ligands, etc.

ii.  Transfer the protein mixture to a robot-customized
syringe

iii. Mix with the reservoir solution (by robot)
Seal each crystallization well

Monitor over time for crystal growth

L 7 Protein i
Crystallization "7:_':\;;;*;_:; B — iii
drop H,0
H,O ('\ -
: —+-Crystallization
drop

Reservoir solution
(crystallization buffer)

(Ghosh et al, Nature Rev Mol Cell Biol, 2015)



Membrane protein crystallography

Bicelle (stacked 2-D crystals)
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(Ghosh et al, Nature Rev Mol Cell Biol, 2015)
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Bicelles Elongated Micelles Perforated Lamellar Sheet

— Q.T
(Ujwal & Bowie, Methods, 2011)



Bicelles Purified detergent-solubilized
(On Ice) membrane protein (On Ice)

A
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Pipette to mix and incubate on ice for 30’

l

Protein-Bicelle
Mixture

J

Crystallization trials using standard set up including robotics
(Ujwal & Bowie, Methods, 2011)



Membrane protein crystallography

In meso lipid cubic phase (LCP)

(
i.  Mix proteins with desired chemicals, other proteins,
ligands, etc.
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LCP formation
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LCP dispensing
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no cloudiness
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(Caffrey, Acta Cryst F, 2015)
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X-ray crystallography: micro-diffraction

v \-

LCP

Bacteriorhodopsin
(Birefringence)

Bacteriorhodopsin

(c) (d)

Bacteriorhodopsin Lysozyme

Bacteriorhodopsin
(X-ray damaged)

Cholesterol

10 um

( Cherezov & Caffrey, Faraday Discuss, 2007)



( Warren et al, in “The Next Generation in Membrane Protein Structure Determination”, 2016)



1s exposure 10s exposure

(Cherezov & Caffrey, Faraday Discuss, 2007)



X-ray crystallography: micro-diffraction

Bicelle

50-500 pm 100-300 pm 50-150 um
25-30 A 7-10 A 3.5-4 A



. Long exposure . Ri tion dage * Signal (/o =1-
2-5 sec @ APS 3-5 frames (<5° ) 1.5 at 3.9-4A)
30 sec @ ALS




Cryo-electron microscopy (cryo-EM)

e Electron crystallography v
« 2-D crystals / MicroED
 Helical crystals

e Single-particle cryo-EM v

e Cryo-electron tomography (cryo-ET)



Only 2-D projections are recorded (x,y)!!
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Microelectron Diffraction (MicroED) &
Electron Crystallography

Cryo-EM applications in protein
structural biology:

2) Microelectron diffraction:

(need to generate protein crystals, but
much smaller than that for X-ray
crystallography)

a. Prepare purified protein samples,
crystallize and and freeze them.

b. Take electron micrographs of protein
crystals and diffraction images.\

c. Use diffractions to establish the
amplitude information and images to
find the phase information, then

calculate the structural factors to
generate the elecM
target proteins.

d. Model building like that in X-ray
crystallography.
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Single-Particle Analysis (SPA)
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Cryo-EM applications in protein
structural biology:

1) Single particle analysis:
(no need to generate protein crystals)

a. Prepare purified protein samples and
freeze them.

b. Take electron micw

protein particles.

c. Collect several of “identical” images
and add altogether to enhance the
signal of the objects (darker area)—_|

d. Then place amino acid models in the
electron density.

Average from 16 frames

(Bai et al, eLife, 2013)



A. Raw image data typically seen from a
cryo-EM experiments. Protein particles

°f  (motion correction)

are usually shown as the dark objects.
This image shows particles of a
proteasome complex.

B. However, often time, each particle
looks “blurred”, largely because of

Last
| frame

Image film

image drifting during the picture
taking, as well as the microscopic
movement of protein molecules in
the ice. "Motion correction” is thus
necessary to help enhance the image
quality, i.e., making the images sharper.

C. We use power spectrum to evaluate the
quality of an image. Power spectrum
can be seen as a theoretical diffraction
pattern of the image in A.

D. Corrected and sharpened images from
A. As indicated in C, the corrected
picture clearly reveals potenti
information that ca resolved as
better as 3A.

o} First frame —

-10 -8 -6
X shift

-2 0

-4

Uncorrected image.

Power spectrum
(Computed
diffractic

Uncorrected FFT | Corrected FFT ¥ ;ébrrebtféd‘imagg- :

What’s this?

(Cheng et al, Cell, 2015)
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(Cheng et al, Cell, 2015)
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EM Samples: Membrane Proteins

« Use of detergents: starting with the one used for purification,
e.g., DDM.

 Mild non-ionic
« Amphipols

« Nanoparticles: a membrane-mimetic scaffold that stabilizes
proteins in the native lipid-bilayered environment.

 MSP-nanodiscs (MSP: membrane scaffold protein)
« SMA nanodiscs (SMA: styrene—maleic acid)

» Bicelles

» Peptidiscs



EM Samples: Membrane Proteins

Micelle Amphipol

¢ 7 e

Nanodisc SMA nanodisc

Liposome

Peptidisc

(Mio & Sato, Biophys Rev, 2018) (Carlson et al, eLife, 2018)



DETERGENTS FOR CRYO-EM

EM Samples: Membrane Proteins

The following detergents have been sucessfully used in the Cryo-EM studies of membrane proteins. Want to learn more? Check out our compilations
of membrane protein strucutures for 2016(/Landing/2016/Cryo-EM-Update-Sept16), 2017(/Landing/2017/Cryo-EM-Update-Oct17), and

2018(/Landing/2018/Cryo-EM-Update-Oct18).

GDNI101 - GDN(/PRODUCTS/SPECIALTY-
DETERGENTS-PRODUCTS/COMPLEX/GDN101)

Products/COMPLEX/GDN101)

Digitonin is commonly used for Cryo-EM, but there are many drawbacks
including batch-to-batch variability and solubility. GDN has been shown to
be an effective drop-in substitute for Digitonin which is being used in a
number of recent structures.

D310 -

A835 - AMPHIPOL A8-
35(/PRODUCTS/SPECIALTY-
DETERGENTS-
PRODUCTS/AMPHIPOL/A835)

———{CHCH——{CH,CH——CHCH;

A

Na'0 o My 0 My °

X~ 035,y ~ 025,z ~ 040
(/Products/Specialty-Detergents-
Products/AMPHIPOL/A835)

First described in 1996 by Jean-Luc Popot,
amphipols are a class of polymers that can stabilize
membrane proteins in a detergent-free, aqueous
solution. To date, there have been over 20 Cryo-EM
structures of membrane proteins determined using
Amphipol A8-35.

NG310 -

P5008 - AMPHIPOL PMAL-
C8(/PRODUCTS/SPECIALTY-
DETERGENTS-
PRODUCTS/AMPHIPOL/P5008)

b

(/Products/Specialty-

rti
1+

SN
/H

Detergents-Products/AMPHIPOL/P5008)

In recent years, PMAL-C8 has been gaining traction for
use in Cryo-EM(/Landing/2018/PMAL-July18) with a
number of unique structures published. PMAL amphipols
are zwitterionic, and contain repeating units of a
carboxyl, ammoniumamidate, and alkyl chain.

LIPID

DDM(/PRODUCTS/DETERGENTS/MALTOSIDES/D310) LMNG(/PRODUCTS/DETERGENTS/NG- NANODISCS(/PRODUCTS/LIPIDS/LIPIDS)

(/Products/Detergents/MALTOSIDES/D310)

The most commonly used detergent in membrane protein crystallization,
Dodecyl Maltoside (DDM), has also been used in the Cryo-EM structures of a
number proteins. DDM is also often used as a mixture with Cholesteryl
Hemisuccinate (CHS)(/Products/Detergents/MALTOSIDES/10-1-DDM-CHS-
Pre-Made-Solution).

CLASS/NG310)

HO.

-0
Mo~

HO HO-

o L0
oA o
HO

O o

HO.

o
MO
Ho NAT

HO“HO  Oho-Yo

(/Products/Detergents/NG-CLASS/NG310)

Due to its very low CMC, the concentration of LMNG
in the buffer can often be reduced to low
concentrations, reducing the amount of free
detergent micelles, and reducing background. Like
DDM, LMNG is often used as a mixture with
Cholesteryl Hemisuccinate (CHS)
(/Products/Detergents/NG-CLASS/LMNG-CHS-Pre-
Made-Solution).

Saae

tinms

/Products/Lipids/LIPIDS)

Lipid nanodiscs allow for the reconstitution of a
detergent solubilized membrane protein into a lipid
environment, and are being increasingly used in Cryo-
EM. Anatrace offers a full selection of the lipids
commonly used in nanodisc reconstitution.

(Anatrace, Inc.)



Fluorescence as a mean to study membrane

protein structures:

Fluorescence Resonance Energy Transfer (FRET)
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Magnetic resonance as a mean to study membrane
protein structures:

Nuclear magnetic resonance (NMR): function and dynamics
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(Liang & Tamm, Nat Struct Mol Biol, 2016)
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Magnetic resonance as a mean to study membrane

protein structures:
Nuclear magnetic resonance (NMR): function and dynamics

Asymmetric water accessibility in E coli multidrug transporter EmrE
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(Morrison et al, Nature, 2012)



Magnetic resonance as a mean to study membrane
protein structures:

Spin-labeled Electron paramagnetic resonance (EPR) spectroscopy

Distance Distribution
c D lintra

Echo Intensity

20 30 40 50
Distance (A)

Nanodiscs

Liposomes

Echo Intensity

(Mchaourab et al, Structure, 2011)



4. Other strategies in studying
membrane protein structures

Fusion proteins v
Antibody

Ligands

Library of small molecules

Protein re-engineering



Fusion protein strategy:

(Kobe et al, Acta Cryst F, 2015)



